Experisnces With Compiler Code Generatian by Parsing PE-TI-1008
DATEZ: July 3, 1982

TO: R T ¥ £ Personnsl

FRGH« Javiu Spectors.Retzargetable Zack End Project

SUBJECT: Fxzeriences Witn Compiler Code Seneration by Parsing

REFERENTE: None

KEY®ORDS: LANGUAGESs COMPILERSy CODE GENERATIONy PARSINGs RBE

ABSTRACT

The Retzrgetable Zack Zne (2BEJ project of the Transtator Cepartment
aims at producing a zeneralizec table-cdriven codec generator that will
make it easy to «create compilers for a varicty of new and existing
hardwarz architscturess including V-Modes X-Modes M580004s etce

The feasinility of this goal has been demonstrated oy the writing of a
prototyose code generator usinag the Grzham-Glanville-%Sanapathi method of
code gensration by attributed LR parsinae

This document gives an overview of the nature of the code generation
problem and how the Graham-Slanville-Ganapathi method provides a
sotution. FResults obtained using our workina prototype are describede

Please direct guestions to Scott Turners exte 4073, xemail TURNERY
MS 10B=-17-3s or to any member of the RSE Group.

PRIME RDZZ RESTRICTED

”~

txperiences With Compiler Code Generation by Parsing PE-TI-1008

1 gocde _Generation

Cocde_generation 1is the term given to the last transltation step in a
compilere. In this last step an Intesrmediate Renresentation ¢(IP) of the
usert*s prodram is translated into computer instructions (and stored in

@ 8inary or other such file of executable or almost-executable code).

Code generation has trscitionally been cone by & detailed and ad hoc
analysis of the wvariocus <cases for which code is to be emittede Such
code generators have usually been programmed in the same implementation
languags used for the rest of the compilere.

It has oecome increasinaly evident, howevers that this traditional
methodology is not adequate to produce comoilers that are reliables
free from bugse easy to extends or easy to retarcete. (To retarget
means to make an existing compiler produce code that will run on some
specific computer. To rehost means to make the compiler itself run on
another computers) Coding a «complex transformation suech as that
between source Language and IR or that between IR and tarcet machine
directly in the 1implementation tLanguase means that the entire
transformation program must be rewritten whenever retargeting is
necessarye. In contrasty a table-driven approach separates the
algorithms that are independent of the taraget architecture from those
that arz dependent on ites making the code generator much easier to

comprenand and modifye

2 LR_Parsing

Tne recognition of the constructs of any languages e it PL/Is FORTRANS
or any others is conveniently and efficiently done in modern compiler
Front Ends wvia table-driven parsing methodology. An examnle of a
table-driven parser here at Prime is DEREMER (see PE-T-5353}s which
recognizes constructs in a language by oreprocessing a BNF (Backus-Naur
Form) description file to produce compact tables that are used to drive
an LR pjarsere. An LR__parser 1is a program that recognizes Language
constructs in a bottom-up fashion. For examplees we might define a
fragment of a programming lancuage involving parenthesized expressions
using the following BNF production:

exsression Ii= term | expression '+ term | *(* expression ')?

This mesns that an expression can consist =ither of a terms the sum of
an expression and a termy or a parenthesized expression. An LR parser
driven oy tables constructed from this production would examine 1its
input (from the source tenguage - file) and decide which of the three
alternatives of the production apoly (if none applys either another
procduction applies or a user syntax error has occurred). The parser
recognizes the constructs described on the right-hand side of the
production firsty then the production as & whole is recognizede This
results in a bottom-up parse because the Llow-Llevel constructs are
recognized before the high-level ones (a high-level <construct is
defined in terms of low-level oness as we see in the sample production
above).,

PRIME RDSE RESTRICTED Paae >

Experisnces With Comgiler Code Generation by Parsing PE-TI-1008

3 The_zraham=-Glanville-Ganapaihi Ma2thoa

- o o . o o i S o ot A et ot T S

Re Se Glanville and Ss Le Sraham of the University of California -
Zerkeley realizea that LR parsing could be applied to the Intormediate
Represedtation of a user progsram (in the Tform of a tree of data
structures) just as easzily as to th» user proaram 1itselfe. Code
generztion by parsinuy is just =zs fasts free of buocsy and easy to change
as any »>ther LR parsing applticatione.

Me Ganaocathi of the University of Wwisconsin - Madison extended the
Graham-Glanville method to make it handle more of the code generation
task and to do it in a more tlexible way by adding attributess
predicatesy and actionse. These details will be omitted here in order
to simplify the gresentatione

References to further information on the Graham-Glanville method and
Ganapatni's extensions are nrovided at the end of this paper.

4 Jetails of the GGG Method

The Granam-Glanville=-Ganapathi (GGG) method reguires viewincg the IR as

a seguence of prefix oparators and their operandse. Thus i source
language statement such as "a = b + ¢" s viewed in its prefix form as
"= a2 + D c¢c". L? parsing then decomposes the IR into pieces

corresponding to particular machine instructions.

As 2n cxamplese rconsider the IR statement "= a + b ¢" just mentioned. A
typical GGG code generator would parse this 1into three piecess
torrespanding to the desired instruction seguence

LDA o Load b into a register.
ADD ¢ Add ¢ to the register.
STa a Store the register into ae.

The threse productions that would be recognized might Look as follows:

memory_reference
+ expression memory_reference
v=¢* memory_reference expression

exprassion
exoression
statement :

a4t as s
i o2 o8
i

Since each production must be associated with the appropriate
instruction to be emitteds productions are expanded into onductions
containing the instructionss their cost (this is used to help guide the
parse when alternative parses exist)s and other relevant information
such as Boolean expresstions representing semantic restrictions
(exampla2: recounize an increment dinstruction only when the operand is
a constant having the value 1)« A simplified set of onductions for the

example might Look as follows:

exoression
exoression
statement @

= memory_reference P LDA 1
+ expression memory_reference + ADD %3
t=¢ memory_reference expression ¢ STA %2

e 29 on
I| se oe

PRIME KD&E _RESIRICTELD Page 3

N

Experiences with Compiler Code Generation by.Parsing PE-TI-1008

ibute) associated with
the nth symbol in the oroductions with the Left-hana side counted as
symool J.

The 3n notation refers to a value (called an attribute

5 The 365 Prototype
Our expzrimental code genarator is call=d DEMO.SEG and is lLocated in
directory <TRANST7OREBEDDEMS on system LCHNX. DEMO reads in a specified
Machine Description file then accepts IR prefix strinas from the
terminal and displays the resulting code (code is only generated in
human-r2adable formats since this is an experimental system).

DEXO was Jritten to be flexible and easy to modifys at the expense of
processing time. It takes a large amount of memory and a arcat deal of
CPU tim2 to process even a small example. This is due first to the
fact that the desired Machine Uescription file is read in and processed
every time DEMO s Lloaded tinstead of saving the internal data
structures in & file and reading them back in) anz second to the fact
that thz parsinu tables are calculated directly from the onductions at
code generation time tinstead of being grecalculated and caved in a
file)se An actual implementation of the 666 method would probaoly run
as fast as any other known table-driven coce generator methocCe

Instructions on the usage of DEM0O and a full internal description are
provided in the followinu wvocumentse available in the cirectory
CTRANST7>RBE>OQC:

R3Z43+50C Prototype Desicn
R3ZI.4.D0C Prototype Functionality

PRIME _RDXE _RESTRICTED FPage 4

Experisnces With Compilar Code Generation by Parsing PE-TI-1008

N

— e i, e s e e . S e v i S S

The foltowing is 3 tiny OEHMO machine descriztion fite for 2n imaginary
computer having two memory Locations (called M1 and M2) and two
rezisters {called R1 ang R21. Only the operations of loacings addings
anc storing are modeileds in this machine descriptione

“Types
int dRanyge -2715+e62715=-13
ptr sConstants mls m23

A0perators

{
Uperands
| Result Operand
Soerator_| __JIype __Tyves Commutes Comments 1
+ 2 ints dinte dint %ACommute: {add}
d 1 inte otrs) {dereferencingl
= 2 stmte Dtre int: {assinnment’

— . v . e o U S — s

%4Instructions

{Memory References)

or s ml ¢ tH1Y %Cost 0 %XSize 03
mr te m2 . TM2e XCost 0 %Size 05
ref iz & ar ! 32.ref_code ZCost 2 %Size G}
ref 1= r : YR* || STRING(2l.number)

XCost 1 %S1ze 0
ref (:= int T f=* |} STRING{(Sle.value)

“Cost 2 251ze 0%
{Instruction Setl
r tiz ref SPLOAD R* [} STRING($O.number) [| ®s°

|| $1.ref_code |} *3°*
%¥Cost 1 + $leref_cost %“Size 1%
r i+ r ref \ EGUAL REG(30.numbers $2.number)
StADD R* (| STRING(3O0enumoer) | Yot
[| 33.ref_code |} 3¢

%“Cost 2 + t3.ref_cost %*Size 13
stmt ::= = ar r $YSTORE R® || STRING(S3.numcer) || ty? “N
il $2eref_code | ®3°
%“Cost 3 %Size 13

PRIME RD%Z RESTRICIED Fage 5

Experiences With Compiler Code seneration by Parsing PE-TI-1008

The following subsections give examples of IR and corresponcing machine
coce emittec for several of the machine architectures investigated.
This sa2ction is me3snt to give an idea of the ease with which code for
various computers can Dpe¢ generated using the 566G methocs many
difficutties ang Limitations we have discovered will not be Gciscussec
nere duz to their tachnical nature as well as their known potentiat for
peing raosolvaole by further worke

7.1 RPrime V=-Mode
Example of emittina an increment instruction as an optimizaticn for an
INTEGER~2 aadition:

=int2 addral S8 11 +int2 1 a8int2 addrel SB 12

(Add the constant 1 to the contents of Locction S3+12
ana store the result in Locetion S$8+11)

---------- size = 3 =======--- ¢ost = 340 e —— -

Loa SBx+l2

STA Se%+11

Exanple of indirections indexingys and the use of & temporary memory
tocation in caliiny a procedurs and passinag an araument:

catll 2ptr acdrel U8
arg addrel addr
empty
(call indirect via the contents of LB+52s with an argument
whose address is calculated by adding to SB+200 the value
contained in SB+355)
---------- size = 9 ===—=====w (o5t T 14680 =—==-m-e-e-o-
LDX SBX+35
EAL SBX+200+X
STL T _PTR4_1
PCL LEX+52 4>
AP T _PTR4 _1e¢*SL

52
el S

Y]

200 @int2 addrel SB 2%

Example of converting an INTEGER*2 to a REAL*4:

=rzat4 SB Fint2 LB
(Store the INTEGER+*2 value pointed to by the LEZ register into
the INTEGCR=*4 value pointed to by the S3 reagister)

---------- size = 5 =-=-------- cost = 3380 —==m=-—----
LA LB%

FLTA

FST SBX

; Example of REAL*4 arithmetic:

PRIME ROLE RESTRICIED Paae A

Experiences With Compiler Code Generation by Parsing PE-TI-1008

=zrzal4 SB negr4d areal4 LS
(Move the negative of the RCAL+«4 valu2 pointed to by the LS
reaister to the REAL*% vuriaple oointed to by the S8 register?

---------- size = f ~==m====-== cost 5250 ——————————
FLJ Lg%

FCH

FRN

FST SB8%

txample of INTZGEIR*4 arithmetic:

=int4 addrel S3 50 +int4 43 dint4é addrel SB 52
(Azd the INTIGER=*4 value contained in SB+52 to the
constant 49 and store the result 3n S3+50)

---------- size = 6 =—=-==--=--- cost T 1040 =—=====—e--
LOL SBZ+52

ADL =43

STe SEXN+50

7.2 Prime X-Moue

The exanples 1in this section concentrate on one aspect ot X-Modes
Primets new instruction mode; they cemonstrate the ability of DEMO to
easily hancle the many special cases of shifting in X-sode.

Figure 1 is an excerot from the partial X-¥ode machine description used
for the exanpless it contains the oanductions that «descrite all the
shift instructionss. The specialized instructions (ee.ces those which
shift by one or two) specify the conditions under which the instruction
may applys 3nd a cost that makes it <cheaper than the more generat
instructionss. DEMO uses this information to generate the wmost
efficient instructions by setectings from those onductions whose
coneitions are metsy the one with the lowest coste

The puroose of Figure 1 is to give the flavor of a machine description
of a <complex aspect of a machine. It contains the following terminal
and non-terminal symbols that are definec in parts of the machine
description that are not shown:

Gr stancds for a general register -- anytime it is used on a
left sides DEMO allocates a register for it.

int2 is a terminal symbol into wWwhich any 16-bit 1integer is
lexede.
shftl is the shift operators which takes two int2 operands

print2 is on the left sides of onductions that are not showne but
which generate reference attributes wWwhich contain the
appropriate strings for two hyte (half word) memory
referencese.

PRIME RDSE RESTRICTED Page 7

N\

Experiences with Compiler Code Generation by Parsinn PE-TI-1008

nrints is Like mrint2s but fts resference attriobute contains
strinzs for four byte (full word) memory referencese.
{SHIFT FROGM¥ MCMORY BY 1 0k 22
gr (= shftl mrint2 int2 NZQUAL(E3.valuecel)
DoPLALl RP[{STRING(SC.number)||*y*{|32.r=2f_codel|*;®
scost $2.ref_cost + 10 Lsize 17 {Load Halfword Left shift 13
gr = shftl arint2 int2 \EQUAL($3.valuee2)
: 'LhL2 R |STRING(30e.number)||*s¥}|32.ref_codej}*:?*
“cost %$2.ref_cost + 10 %size 15 A{Load Halfwerd Left shift 2}

gr 1= shftl mrint4 int2 \NEQUAL($3.valu=y1)
¢ ‘LL1I RYJISTRING(SCenumber) || *s?||32.ref_codej|*;?
“cost $2.ret_cost + 10 %size 13 {Load word Left shift 1)
ar i= shftl mrint4 int2 VEQUAL($3.valusz,2)
v o'LL2 RY[{|STRING(SUenumber) || ?s*|[3$2.ref_codel]*3?
rcost 32.ref_cost + 10 %size 15 {Load word Left shift 03}
{SHIFT FROM REGISTER BY ONE CR 2
gr = fti gr int2 \EQUAL($3.valuesl)

sh
NEQUAL_REG(30.numbers$2enunber)

< *SLL1 RP*I|{STRING($Cenumber)|}]*se®

scost 5 %size 15 {Shift Logical Left 112

gr i= shftlL ar int2

MEQUALCE3svatlues2) NEQUAL_RLCG(30.numbers$2.number)
¢ "SLL2 RU*[ISTRING(30enumbarijlese

“cost 3 Asize 14¢ {Shift Logical Left 2%

“gr iz shftl gr int?2
VCQUAL(3Zavalues—-1) \EQUAL _REG(S0enumbersyilsnumber)
I *SLR1 R®[JSTRING(SOe.number)||*;?
icost 5 %size 13 {Shift Logical Right 11}

gr {¢= shftl gr int2

VEQUAL(S3evalues=2) \EQUAL_REG(S$0.numbers$2.number)
¢ *SLR2 KRY[|STRING(30enumber)]|*;e?
{cost 5 %size 13 {Shift Logical Right 23

{SHIFT FROM REGISTER BY CONSTANT}
gr 1= shftl gr int2
\RANGE(-329383.valuesy32) \EQUAL_REZG(SCenumberyi2e.number)
I *ISHL R'!]STRINS{SO.number)ii'q='{lSTRING($5.value)[i’:'
Tcost 10 Xsize 1: {Immediate SHift register Leftl

{SHIFT FROM REGISTER BY CONTENTS OF REGISTER?}
shftl gr reg \EQUAL_REG($0enumbers$2.number)
¢ *SHL R'iiSTRING(SD.number)ii'g'{l$3.ref_code!l'3'
icost 100 %size 2% {SHift Logical by contents of register’

.
LX)

gr

Figure 1 _-_Shifting Excerpots from_an_X-Mode Grammar

PRIME RDSE_RESTRICTED Faae a

| — — e oo 2, —

Experiences Wwith Compiler Code Generation oy Parsing PE-TI-1008

Te2el A _Very Detailed Examole ‘
The processineg of the first excmples which demonstrates the use of the
special load-anz-shift instructions (only feor s lLeft shift by one or
twokby will ve itlustrated in some detaile The IR coula be from a F77
statement like:

I = LS(Jeli

where 1 is at S5%+0 and J s at SB3%+1000. The code emitted 1is:
IR> =int4 sp shftl 3int4 sddeelw sb 1000 1
=INT4 SB SHFTL &INT4 ADDRELW S2 INT2.1000 INT2.1
---------- size = 3 -=-;==---- cOst = 10 =—--=------
LLl R1eSz%+1000 * {oad word Left shift 1

3T RieSHX x 5Tore

Figure 2a shows the parse by w«hich the <code was emittec for this
example. The rules that apoly are shown in Figure 2b.

Experiences Jith Compiler Code Ceneration by Parsing

{13

I> =int4 so snftl 2int4 addrelw sb 1037 1
=INT4 S3 SHFTL INT4 ADDRELW So INTZ2.1000 INT2.1 {13
g-ief_ccae. Sk
=INTY éi SHFTL & INT4 ADDRELW S2 INT2.1000 INT2.1 {32}
:—Ref cogel S35
=INT4 é?ﬁl SHFTL ZINT4 ADDRELW S$B InNT2.1000 INT2.1
:-Ref_coje: S3¥%
ZINTG MINI SHFTL 2INT4 Aogaggg_ég-;glg;;ggg INT2.1
;-Ref code: SBX+1000
SINT4 MRNI SHFTL @INT4 égg; INT2e1 {22
:-Ref_cade: S8%+1300¢C
SINT4 M3INI SHFTL @;glg_ég INT2.1 {52
:-Ref_code: SH#+10C0
=INT4 MRNI §5EIL_£RINT4 INT2.1 (8}
f
i—Coie: LtL1 R1¢SE%+10003
2INT4 MRINI éﬁ {73
;-Code: LiLl R1+SBZ%Z+10003
i-Ref_code! R1
iLﬂIi_ﬁiﬁL_éiﬁ {81
;-Code! LL1 R1+SBX+10003ST R1+SB%s
éTMT
Lt1 R1eS8%+100¢0

ST R1+4S5%

Figurs_ 2a

—_Step by Step_Fxample of Code

Seneration

PE~TI-1008

Page 10

Experiences With Compiler Code Generation by Parsing PE-TI-1008
lijnr si= s5h I osspXe g

2imr v mrai $lervef _codes

I,arni Pv= or ! Gleret_codes

4imreni ti= ad £ $3evalucsy 27156 = 13

crelw br int2 \RANGE (O
$2e.ref_code 1} *+* {1} S

3int4 mr I $2.ref_code:

s %
TRING (3$3. ‘J}[.Ue)x

.e

Simrinté

se aa
"o

6{ar shftl mrinte int2 VEGQUAL(33.valuesl)
I S I RYFISTRINSG(30anumber)j|Ys?{}32.rcf_coce]|¥s? 3
Tires I 3r 1 YRYJISTRING(Sl.numbDerds;
Bistmt i =intée ar reg
s *ST Yij33eref_codef|*s?|{| $2sref_codejf®*s* 3
Figure 20 - Gnductions Used in_Fiaqure Z2a

after the Line with the IR typed by the usery in figure 2as is a
resreseatation closer to the dAnternal forme Tk only siunificant
difference is tnat integers are translated to INT2.<intcger vatuedsy and
are represented internally as the symbol I%T2 with the zttribute
"value" containina the dinteder. The c¢ode 1is generated in nine
recuctisnsty the effect of each reduction is shown ©y wunderlining the
part of the parse stack that is to be replaceds drawing a line to the
single symbol replacing thosc symools in the next picture of the parse
stacke 2and puttins next to that Line the attributes that are being
transferrec to the new symaole The number to the Left of the onduction
in Figure 2% that was used for ecach reduction is shown in Figure 2a 1in
curly brackets to the right of the orevious parse stacke

Te2e2 Jther Examples of Shifting

Example ilLlustrating a shift snen both operands must come from memorye.
The IR could be from a F77 statement Lika:

r—
"

LSCJsK I
where 1 is at SE%+0s J at LE%*0e and K at S2%+1350.

IR> =int4 sh shftt zint2 b 3int4 addreiw sb 1090
—INT4 S8 SHFTL aINT2 L2 3INT4 ADDRELW SB INT2.100C

---------- size = 8 =======--- cost = 200 —==-====-=--
L R2sS3%+1000 * Load

LHSE R1eLB% * Load Halfword with Sign Extented
SH. R1sR2 » SHift Logical

ST R1eSG¥% * STore

Example illustrating the use of the special case shift by one or two
instructionss where the first operand is already in a register. The
example could be the IR from a F77 statement Like:

)

N

4

Expzriences witn Compiler Code Generation by Parsina

LS(u+Dyel)

where I is at Sa¥+i¢ and J is at SB%+100.

PE-TI-

IR> =dnte sb shftl +1int4 Sint4 addrelw s$5> 100 5 2

=I[NT4 S5 SHFTL +INT4 5INT4 ADCRELW SB iMNTZ2.100 INT2.5 INT2.2
---------- size = 7 =====e=ww- (¢c0ost = 80 =mmmme—ee-

L Rle=H * |_nad

A RleSU%+100 * Add

SLig Ri * Shift togical Lett 2

ST R1eSEZX * LTore

Example using special instruction that sh
speciat instruction that increments a r
from a 77 statement like:

by 2o The

I = 2 & LS{ds2)

where [is at S3%+0 and J is at SB5%+300.

fts durinc a load,
Jister

and

IR> =int4 sb +int4 2 shftl 3int2 addrelw sb 240 2

SINT4 SB +INT4 INT2e2 SHFTL QJINT2 ADDRELW S8 I4T2.900 INTZ2.2
---------- siZze = 4 ==eeceee—- ¢ost T 15 e-mmemmeea-

LHLZ R1eSHA+330 * Load Hafword Left shift 2

IR?2 R1 * Increase Rkegister by 2

ST K1sy33% * STore

73 80320 Microorocassor

Example of INTEGER=4 arithnotice. WNote that this example uces the

IR as the last V-Mode examole ahove.

PRIME_RD3E _RESTRICTED

1008

also

IR could be

same

Experiences With Cozpiler Code Generation by Parsing

(azd the ILNTEGLIR*4 vaitue contained in SE+52
constant 49 and store the resutt in SZ+5(0)
---------- size = 30 ==-—=—==== o3t = 103
Lx1 By=82
SPAHL
JA3 8
CALL LCIg
2B 2
LXI De=45
CAa_lL T'NTL
08 1
CALL ADUIs
o8B 2
05 1
LXI B84=5C
SPAL
DAD o]
CaLl ST4
03 z
A furthzr exampls of INTEGEZIR*4 arithmetic:
zint4 addrel 35 11 1
(Store the constant 1 as an INTEGER*4 in the
---------- size = 16 =======-==-- ¢ost = 38 -
LXL De=1
CA_L INTL
Jb 1
LXI Be=1l1
SPHL
DA 8
CALL ST4
D3 1

Ted

=int4 acdrel 52 50 +int4 43 z3int4 addrel <8 8
>t

jon
(8]

32 _Microprocessor

(These =2xamples alt use 8=-bit arithmeticy for simpli

PE~TI-1008

- — - - - - -

cityed

Example of & larce expression forcing the Accumulator to be
into a temporary memory location:

PRIME RD&E RESTRICTED

"spilled"®

Page

13

»
v

s With Comgpiter Code Ceneraticon by Parsing PE-TI-1008

i
b3
L #]
4N
-
—e
47
s}
()
"

-~

= 304 + « 5 406 5 401 + 3 436062
(Store the sum of Locations 45
LD 403

gLz

AUZ 492

STA Lu3

L4 401

r~ryo~

vk o
ADZ 400
cLZ
ADT 206
STA 43¢

4835
tnrouch 427 into location 4041}

a0

Example of the simultaneous use of both indexinu modes:

= *addr 100 3 +addr 400 2 3

(Store the numoer 3 in the Llocation obtained by adding 2
to the contents of Llocation 400 to find a Location S
then adcing the contents of s to the contents of
tocation 180)

LDa #3

LDx &2

LOY 400 4X

STA 100C+Y

8 Acknowledzments

The BEM3 prototype <code generator was written by Debby Minards David
Spectory and Scott Turner uncer the leadershipo of Scctt Turnere.
Experiments with wvarious machine descriptions files were conducted by
Lou Grosse Davicd Spectors and Scott Turner.

t1J M. Sanapathiy Retargetaple Code Generation and Gotimization Usingc
Attribute Grammars Phe O Dissertation, University of

Wisconsin-dadisons 1980.

[2] Re Se Glanvilles, A Machine Independent Alzorithm for Code
gensration ang__Its _Use _in__Retargetable Compilerss Phe De
dissertations University of California - Berkeleys Decembers 1977.

£33 Re Se Glanville and S. Le Grahams A New Method _for_ Compiler Code
Genzrationy Fifth ACM Symposium on the Principles of Programming
Languages (PQOPL),s Januarys 1978, Pe 231

! (4] Se L. Grahams Table-Driven Code Cenerations IEEZ Computers Aucusts

1980, De 25

PRIME_RDSE RESTRIC Page 14

Experiences With Compiler Code Generation by Parsing PE-TI-1008
£53 Ps %o Turners Deoterministic Parsina_with Code_Generation_ _Grammarss ’
Fils REEDDCQUDREC.8400Cs Marchs 1982.

PRIME ROZE RESTRICTED 7 Page 15

	Cover Page
	1
	Code Generation
	LR Parsing
	2
	The Graham-Glanville-Ganapathi Method
	Details of the GGG Method
	3
	The GGG Prototype
	4
	Sample Machine Description File
	5
	Experimental Results
	6
	7
	8
	9
	10
	11
	12
	13
	Acknowledgements
	14
	15

